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Abstract
We present numerical data for energies and widths of energy levels of a two-
dimensional neutral donor in an electric field. The problem, formally coinciding
with that of a two-dimensional hydrogen atom, is solved by a two-dimensional
finite-difference method. The data are obtained for a broad range of electric field
strengths and are an essential supplement and refinement to existing theoretical
investigations, carried out for weak fields.

The properties of both neutral and charged donors in narrow quantum wells are a subject of a
large amount of both theoretical and experimental investigation [1–8]. In very narrow wells
a neutral donor can be considered as a two-dimensional counterpart of the hydrogen atom.
Frequently used compounds for current experimental investigations (see for example [7, 8])
of such systems are layers of GaAs/AlGaAs. The high mobility, i.e. small effective mass,
of the electrons and the comparatively large dielectricity constant of this and many other
semiconductor materials facilitate study of strong electric field effects in the laboratory.

The simplest theoretical problem in this context is that of the Stark effect and the
corresponding broadening of the spectral lines for the two-dimensional hydrogen atom. These
effects can be directly observable in optical spectra of semiconductors and also can affect other
physical properties of thin films. There are several works in the literature directly addressing
this problem [1–4, 9, 10], but, nevertheless, there are no numerical data for a broad range of
the electric field strengths published. The goal of this communication consists in filling this
gap.

The Schrödinger equation for an electron confined in the plane (x, y) and moving in the
field of a Coulomb centre and a constant uniform electric field F pointing along the x direction
is given by [

−1

2

(
∂2

∂x2
+
∂2

∂y2

)
− 1

r
− Fx

]
ψ = Eψ (1)
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Table 1. Energies and half-widths of the ground state level of a neutral donor in two dimensions.
(Effective atomic units.)

F E0 E0 [1] �/2 �/2 [1]

0.0 −2.000 00 −2.000 00
0.2 −2.003 31 −2.003 28 6.639(−11) 7.4879(−11)
0.3 −2.007 55 −2.007 38 3.679(−7) 4.4331(−7)
0.4 −2.013 81 −2.013 13 2.5233(−5) 3.2692(−5)
0.5 −2.022 45 −2.020 51 2.9888(−4) 4.2082(−4)
0.6 −2.033 78 −2.029 53 1.4696(−3) 2.2729(−3)
0.7 −2.047 63 −2.040 20 4.3871(−3) 7.4921(−3)
0.8 −2.063 39 −2.052 50 9.6579(−3) 1.8164(−2)
1.0 −2.097 76 −2.082 03 2.7792(−2) 6.1634(−2)
1.2 −2.132 59 −2.118 13 5.4838(−2) 1.3686(−1)
1.5 −2.181 63 −2.184 57 1.07587(−1) 2.9775(−1)
2.0 −2.251 39 −2.328 12 2.15454(−1) 6.2723(−1)
3.0 −2.352 24 −2.738 28 4.65656(−1) 1.2457
4.0 −2.417 43 −3.312 50 7.3311(−1) 1.6826
5.0 −2.459 21 −4.050 78 1.0057 1.9648
7.0 −2.497 97 −6.019 53 1.55077 2.2523

10.0 −2.489 55 −10.20 31 2.35289 2.3683

where r = (x2 + y2)1/2. We use here effective atomic units. The units of energy, length, field
strength, and time are µκ−2 (27.2) eV, κµ−1 (5.29 × 10−9) cm, µ2κ−3 (5.14 × 109) V cm−1,
and κ2µ−1 (2.42 × 10−17) s, where µ is the effective mass of the electron in m0 units, κ is the
dielectric constant, and e is the charge of the electron. The positions E0 and half-widths�/2 of
resonances can be obtained from the complex eigenvalues of the energy E = E0 − i�/2. These
eigenvalues have to correspond to solutions of equation (1) having the asymptotic behaviour
of an outgoing wave. The value 1/� gives the average lifetime of corresponding quasi-steady
states.

Analytical solutions of equation (1) for the case F = 0 are presented in detail in [1, 11].
We recall here that in this case the energy levels form a 2D Coulomb series with energies

En = − 1

2(n − 1/2)2
(2)

where n = 1, 2, 3, . . .. The nth level is 2n − 1 times degenerate. At F �= 0 the corresponding
multiplets contain n states of positive parity with respect to the x axis and n−1 states of negative
parity. In the notation of states we follow [1]. This notation is derived from a representation
of equation (1) in terms of parabolic coordinates. It includes two parabolic quantum numbers
n1 and n2 and an additional quantum number, which was introduced in [1] as m3D. When
following this notation, the states of the n = 2 triplet get indices (n1, n2,m3D) = (0, 0, 1

2 ) for
the state with the negative parity with respect to the x axis, and (1, 0,− 1

2 ) and (0, 1,− 1
2 ) for

the two other states of positive parity.
We solved equation (1) numerically in Cartesian coordinates. The method is described

in detail both for bound states [12] and for quasi-stationary states in external electric fields
[13–16]. In particular, our numerical method allowed us to get a solution for the problem
concerning the number of bound states of a 2D negative donor in magnetic fields [17]. The
applications to electric fields include the first calculation of energies and half-widths of levels
of the H+

2 molecular ion [13] and detailed calculations for the hydrogen atom in parallel
electric and magnetic fields [15]. In [13–15] we have developed three different approaches for
calculations of wavefunctions with the asymptotics of an outgoing wave. All these approaches
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Table 2. Energies and half-widths of the levels for the triplet of lowest excited states of a neutral donor in two dimensions.
(Effective atomic units.)

(0, 1,− 1
2 ) (0, 0, 1

2 ) (1, 0,− 1
2 )

F E0 �/2 �/2 [1] E0 �/2 �/2 [1] E0 �/2 �/2 [1]

0.000 −0.222 222 −0.222 222 −0.222 222
0.004 −0.231 491 4.0(−18) 4.5(−18) −0.222 502 2.0(−19) 3.0(−19) −0.213 473
0.005 −0.233 903 3.81(−14) 5.0(−14) −0.222 662 3.288 2(−15) 4.2(−15) −0.211 366
0.006 −0.236 354 1.646(−11) 2.3(−11) −0.222 858 1.715(−12) 2.3(−12) −0.209 287
0.007 −0.238 848 1.160 0(−9) 1.7(−9) −0.223 092 1.420 3(−10) 2.0(−10) −0.207 243 5.0(−12) 1.2(−11)
0.008 −0.241 388 2.646 7(−8) 4.2(−8) −0.223 366 3.737 3(−9) 5.7(−9) −0.205 225 1.8(−10) 3.9(−10)
0.009 −0.243 979 2.859 3(−7) 4.9(−7) −0.223 682 4.589 7(−8) 7.4(−8) −0.203 238 3.8(−9) 5.7(−9)
0.010 −0.246 627 1.832 5(−6) 3.4(−6) −0.224 042 3.309 9(−7) 5.7(−7) −0.201 282 3.1(−8) 4.8(−8)
0.012 −0.252 129 2.648 1(−5) 5.7(−5) −0.224 910 5.940 7(−6) 1.2(−5) −0.197 467 6.9(−7) 1.2(−6)
0.015 −0.260 996 3.016 7(−4) 8.8(−4) −0.226 658 9.097 4(−5) 2.2(−4) −0.192 009 1.141(−5) 2.8(−5)
0.02 −0.276 971 2.325 8(−3) 1.2(−2) −0.230 780 1.018 8(−3) 3.9(−3) −0.183 705 2.431(−4) 6.6(−4)
0.03 −0.308 627 1.214 3(−2) 0.11 −0.240 498 7.356 6(−3) 5.7(−2) −0.169 235 2.8670(−3) 1.5(−2)
0.04 −0.337 521 2.597 6(−2) 0.29 −0.249 060 1.766 4(−2) 0.19 −0.155 216 8.3494(−3) 6.5(−2)
0.05 −0.363 930 4.154 8(−2) 0.44 −0.256 011 2.988 8(−2) 0.37 −0.140 601 1.5422(−2) 0.16
0.07 −0.411 388 7.480 4(−2) −0.266 171 5.684 2(−2) −0.109 536 3.1479(−2)
0.10 −0.473 878 0.126 235 −0.275 297 9.940 8(−2)
0.15 −0.564 660 0.211 850 −0.281 407 0.170 84
0.20 −0.645 63 0.296 148 −0.281 225 0.240 93
0.30 −0.790 53 0.461 52 −0.271 104 0.375 90
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are applicable for a one-centre problem, which we consider here. Most of the results presented
below are obtained by means of smooth exterior complex scaling [15].

A specific feature of the present 2D calculations is their slower convergence comparing
with calculations for 3D systems [13–15]. This requires one to perform all the calculations
on denser grids. Nevertheless, our method allows obtaining precise results with a reliable
estimation of numerical errors. These errors do not exceed 1–2 units of the last decimal digit
of the results presented in tables 1 and 2. (In these tables the powers of ten for�/2 are given in
brackets.) Many of results had higher precision and were truncated for presentation reasons.

Our numerical results in tables 1 and 2 can be compared with those of Tanaka et al [1].
The work of Tanaka et al provides formulae for the real and imaginary parts of the energy of
the ground and lowest excited states obtained for weak electric fields by means of Rayleigh–
Schrödinger perturbation theory. For the real part of the energy they present terms linear
and quadratic with respect to the field strength. More complicated are the formulae for the
imaginary part of the energy. The numerical values obtained from these formulae, which are
the leading terms of asymptotic series for �/2, are also presented in our tables. One can see
that these approximate �/2 values are larger than the results of our numerical calculations.
This difference exists for all the field strengths. Its minimal values are about 20–30% for the
ground state at low field strengths. Nearly the same level of overestimation is observable when
comparing the calculations for the 3D hydrogen atom of [18] (leading terms of asymptotic
series) with the more precise results of the same work [18] and [15, 19–21]. The calculations
of [18] were carried out by the same method and were a basis for the investigation of [1]. Thus,
we can state that the analytical estimations [1] give precise results in rather narrow ranges of
weak fields and are crude approximations for those lifetimes and resonance widths which have
prospects for experimental investigation.
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